- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Roy-Chowdhury, Ritoban (2)
-
Schroeder, Craig (2)
-
Shinar, Tamar (2)
-
Chern, Albert (1)
-
Nabizadeh, Mohammad_Sina (1)
-
Ramamoorthi, Ravi (1)
-
Roy Chowdhury, Ritoban (1)
-
Yin, Hang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Divergence-free vector fields and curl-free vector fields play an important role in many types of problems, including the incompressible Navier-Stokes equations, Maxwell's equations, the equations for magnetohydrodynamics, and surface reconstruction. In practice, these fields are often obtained by projection, resulting in a discrete approximation of the continuous field that is discretely divergence-free or discretely curl-free. This field can then be interpolated to non-grid locations, which is required for many algorithms such as particle tracing or semi-Lagrangian advection. This interpolated field will not generally be divergence-free or curl-free in the analytic sense. In this work, we assume these fields are stored on a MAC grid layout and that the divergence and curl operators are discretized using finite differences. This work builds on and extends [39] in multiple ways: (1) we design a divergence-free interpolation scheme that preserves the discrete flux, (2) we adapt the general construction of divergence-free fields into a general construction for curl-free fields, (3) we extend the framework to a more general class of finite difference discretizations, and (4) we use this flexibility to construct fourth-order accurate interpolation schemes for the divergence-free case and the curl-free case. All of the constructions and specific schemes are explicit piecewise polynomials over a local neighborhood.more » « less
-
Nabizadeh, Mohammad_Sina; Roy-Chowdhury, Ritoban; Yin, Hang; Ramamoorthi, Ravi; Chern, Albert (, ACM Transactions on Graphics)We propose Coadjoint Orbit FLIP (CO-FLIP), a high order accurate, structure preserving fluid simulation method in the hybrid Eulerian-Lagrangian framework. We start with a Hamiltonian formulation of the incompressible Euler Equations, and then, using a local, explicit, and high order divergence free interpolation, construct a modified Hamiltonian system that governs our discrete Euler flow. The resulting discretization, when paired with a geometric time integration scheme, is energy and circulation preserving (formally the flow evolves on a coadjoint orbit) and is similar to the Fluid Implicit Particle (FLIP) method. CO-FLIP enjoys multiple additional properties including that the pressure projection is exact in the weak sense, and the particle-to-grid transfer is an exact inverse of the grid-to-particle interpolation. The method is demonstrated numerically with outstanding stability, energy, and Casimir preservation. We show that the method produces benchmarks and turbulent visual effects even at low grid resolutions.more » « less
-
Schroeder, Craig; Roy Chowdhury, Ritoban; Shinar, Tamar (, Journal of Computational Physics)
An official website of the United States government
